ІНФОРМАЦІЙНІ МОДЕЛІ ПРОЦЕДУР ОЦІНКИ СТАНУ ЕНЕРГОАКТИВНИХ АГРЕГАТНИХ СТРУКТУР В УМОВАХ ЗБУРЕННЯ НАВАНТАЖЕННЯ ЕЛЕКТРОПРИВОДІВ

В статті розглянуто методи і інформаційні технології побудови алгоритмів оцінки динамічного стану приводу друкарських агрегатних машин в умовах дії збурень.

The paper considers methods and information technology for building dynamic state estimation algorithms about modular printing machines in terms of disturbances.

1. АКТУАЛЬНІСТЬ

Сучасний ринок друкованої продукції вимагає високої якості товару, яку можна забезпечити тільки при стабільному функціонуванні агрегатів друкарських машин. При дії збурень в мережах енергопостачання, режими електроприводів агрегатів змінюють свою динаміку, що відповідно приводить до збою процесу управління енергоактивними агрегатами друкарських машин і пониження якості продукції. Тому актуальною є задача створення методів розробки алгоритмів для оцінки стану та динамічного режиму агрегатів, що дасть підставу підвищити якість продукції.

2. МОДЕЛІ ОЦІНКИ СТАНІВ ЕНЕРГОАКТИВНИХ АГРЕГАТІВ ПРИ ДІЇ ЗБУРЕНЬ

Для складання агрегованих виробничих процесів (машини для друку) важливим є побудова моделі динаміки навантаження електроприводів. Загальна математична модель динаміки поведінки агрегатів в просторі станів визначається класом допустимих траєкторій в цільовій області енергоресурсного забезпечення системи:

$$\exists KLF_{ds} , \forall f \in F : f[Z \times T] \to Y \quad y(t) = f(t, z(t)).$$
(1)

Зв'язок між вхідним сигналом і простором станів визначає степінь керованості об'єкта відносно зміни внутрішнього стану:

¹ Українська академія друкарства

$$\exists KL\mu_{\pi} , \forall \mu_{\pi} : [Z \times x(t,\tau)] \to Z, [\forall t \in T, \tau \in T, \tau < t],$$
(2)

а траєкторія стану об'єкта визначається перехідним відображенням: $Z(t) = \mu_1 (Z, Y(t)) = Z^*(t, \tau, Z, Y(t))$ (2)

$$Z(t) = \mu_{\tau t}(Z_T X(\cdot)) = Z^*(t, \tau, Z_T, X(\cdot)), \qquad (3)$$

при цьому рівняння динаміки для неперервних систем має вигляд: $\forall t \in T : dz / dt = f(t, z, x),$ (4)

тобто в такому зображенні в явній формі не виступають збурюючи і управляючі дії.

У випадку, коли управління формуються виходячи з класу ситуацій:

$$\left(U_0(t) \subset KLU_i, KLU_i \in KLStrat\left[U / C_i\right]\right)$$

згідно апріорної інформації необхідної для досягнення цілі $\{Ci \in KLC\}_{i=1}^{m}$, то зміна стану буде:

$$\langle x_0(t), y_0(t) \rangle = f \langle U_0(t), y_0(t), x_0(t) \rangle.$$
 (5)

При дії збурень ми отримаємо "віяло" невизначеності відображень в просторі станів об'єкта керування, що ускладнює розпізнавання динамічної ситуації в системі:

$$\left\{ x_i \right\}_{i=1}^m \left\{ \begin{array}{c} m & \leftarrow \bullet \\ m - & 1 \bullet \\ i \\ i + 1 \\ i \\ i - 1 \\ 1 \end{array} \right\} .$$
 (6)

Тоді інформація про стан об'єкта має розмитий (невизначений) характер, а її міра представлена через густину ймовірності параметра стану:

$$I(X,Y) = \sum_{i=1}^{m} \sum_{k=1}^{m} p(x_i, y_k) \log \frac{(y_k \mid x_i)}{p(y_k)}.$$
 (7)

Для простору станів з розмитою структурою область його розбиття визначається розмитими множинами, а належність елемента в просторі стану визначається функцією належності:

$$\exists \prod Sds = \bigcup_{i=1}^{m} V_1(A_i), \exists \mu_A(x), x \in \mathbb{R}^n \text{ a}$$
$$\{\mu_A(x) \subset [0,1], (\mu_A(x) = 0) \Longrightarrow x \notin A, (\mu_A(x) = 1) \Longrightarrow \Pr ob(x \in A) = 1\}$$

Тоді виходячи з вище наведеного, маємо наступні властивості розмитих множин, які є основою відображення опису моделі параметра стану в умовах невизначеності:

1. $A = \{x, \mu_A(x)\}, \forall x \in X$ – розмиття множини; 2. $S(A) = \{x, x \in X, \mu_A(x) > 0\}$ – носій A; 3. $\{\sup x \mu_A(x) = 1, \forall x \in A\}$ – А-номінальна множина 4. $A = B \Leftrightarrow (\mu_A(x) = \mu_B(x), \forall x \in X)$; 5. $A \subseteq B \Leftrightarrow (\mu_A(x) = \mu_B(x), \forall x \in X)$; 6. AI $B \Leftrightarrow (\mu_{AIB}(x) = \min(\mu_A(x), \mu_B(x)), \forall x \in X)$; 7. $A \cup B \Leftrightarrow (\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x)), \forall x \in X)$; 8. $\mu_{AB(x)} = \mu_A(x), \mu_B(x), \forall x \in X$; 9. $[\exists R(x, y) \rightarrow xRy, x \in X, y \in Y] \Rightarrow$ $\Rightarrow xRy \in [X \times Y]; \mu_R(x, y) \xrightarrow{R} [X \times Y] .$

Тобто опис ситуації в системі носить розмитий характер при дії збурень і недостатності апріорної інформації, тому прийняття рішень в умовах розмитості цілей і обмежень на них визначається процедурою:

$$\begin{cases} D: Alg[GI C], \\ \mu_D(x) = \min[\mu_G(x), \mu_C(x)] \end{cases} \quad \forall x \in V_x(C) , \qquad (8)$$

де $G = \{x, \mu_G(x)\}$ – розмиті обмеження, $C = \{x, \mu_C(x)\}_{V_c}$ – розмиті цілі на області $V_x()$ допустимого стану в просторі цілей.

найбільш Тоді імовірний вибір рішення відповідає $x_{opt}^* = \arg\min\mu_D(x)$ – тобто маємо процедуру виявлення оптимального рішення в умовах розмитості цілі. Наведемо процедуру формування описи структури і динаміки моделі об'єкта на основі траєкторного представлення динаміки поведінки в просторі станів.

Математична модель просторово-розподілених процесів в реакторі з нестаціонарними дифузією і термомасообміном в просторі станів має вигляд:

$$\frac{\partial x(t,z)}{\partial t} = A_{ZX}\left(x,\theta,z,t,\xi\right) + B(t,z)U(t,z,\xi) + C(t,z)W(t,z) . (9)$$

з граничними та початковими умовами

$$Z \in \Omega_{\Pi S_{ds}}, t \in T_m = [t_i, t_i + \tau_m];$$

$$x(t, z, \xi = 0)_{t0} = x_0(z) \in \Pi S_{ds}; M[\xi(t_0)] = 0$$

$$A_{zx}(x, \theta, t, z) = B_0(t, z)U_{0i}(t, z) + C_0(t, z)W_0(t, z),$$

де x – вектор стану системи, z – просторовий вектор, A_{zx} – нелінійний оператор системи(реактора).

Нелінійний оператор A_{zx} може бути представлений через адитивну модель в нелінійному базисі:

$$A_{zx}[x,\theta,t,z,\xi=0] = \sum_{i=1}^{r} \frac{\partial}{\partial z_{i}} \left[\sum_{j=1}^{r} \theta_{ij}^{1}(x,t,z) \frac{\partial x(t,z)}{\partial z_{j}} \right]_{\varphi j} + \sum_{i=1}^{r} \left[\theta_{i}^{2}(x,t,z) \frac{\partial x(t,z)}{\partial z_{i}} \right]_{\varphi j} + \Delta \xi_{A}, \qquad (10)$$

де $\theta_{ij}^1, \theta_i^2$ – матричне представлення в базисі $\left\{ \varphi_i \Big|_{i=1}^r \right\}$.

В стаціонарному режимі динаміку реактора можна представити у вигляді операторної моделі

$$\partial \overset{1}{X}(t,z) = Az \cdot \overset{1}{X}(t,z) + B(t,z)\overset{1}{U}(t,z) + \overset{1}{C}(t,z) \cdot \overset{1}{W}(t,z) ,$$

$$\forall t \in T_{mi}, z \in \Omega \subset \Pi S_{ds} , \qquad (11)$$

$$\overset{1}{Y}(t,z) = N(\overset{1}{X},t,z) + D(t,z) \cdot \overset{1}{\xi}(t,z), \overset{1}{z} \in I_{LP}$$

де Y – результат вимірювання векторів параметрів стану, а $z = \arg opt \lfloor L_p(Y(t,s) | \xi(t,z)) \rfloor$ – оцінка правдоподібності стану

системи, I_{LP} – інтервал достовірності стану, $\overline{U}(\)$ – управляючий вектор.

Фур'є-інтегральний метод синтезу алгоритму відбору даних про вектор стану складного енергооб'єкта з *m*-мірною структурою грунтується на нелінійному вольтерівському перетворенні виду:

$$y(t) = \sum_{i=0}^{n} C_{i} \int_{T_{mi}} K \int_{T_{mj}} \left(g_{i} \left(\tau_{1} K \tau_{j} \right) x_{i} \left(t - \tau_{i} \right) \right) d\tau_{i}^{n} ; \qquad (12)$$

де $\left\{ g_i \right\}_{i=1}^n$ – імпульсна реакція системи.

Якщо сигнал про стан об'єкта виразити в гармонічному базисі $\left\{e^{j\omega_l t}\right\}_{i=1}^m$, тобто:

$$x(t) = \frac{a_0}{2} + \sum_{j=1}^{m} a_j \cos(i\omega_j t) + \sum_{j=1}^{m} b_j \sin(i\omega_j t) , \qquad (13)$$

то вимірюваний параметр стану можна виразити у вигляді:

$$\mathbf{y}(t) = \frac{m_0}{2} + \sum_{j=1}^m m_j \cos(i\omega_j t) + \sum_{j=1}^m n_j \sin(i\omega_j t); \quad (14)$$

$$\operatorname{de} \begin{vmatrix} a_j \\ m_j \end{vmatrix} = \frac{2}{T} \int_0^{T_m} \begin{cases} x(t) \\ y(t) \end{cases} \cos(i\omega_j t) dt \quad ; \quad \begin{vmatrix} b_j \\ n_j \end{vmatrix} = \frac{2}{T} \int_0^{T_m} \begin{cases} x(t) \\ y(t) \end{cases} \sin(i\omega_j t) dt \quad .$$

Компоненти розкладу Фур'є, які спряжені з коефіцієнтами ідентифікаційної моделі динаміки реактора

$$\left\{ R(i\omega_j) \right\}_{j=1}^m = \left\{ \frac{m_j a_j + n_j b_j}{a_j^2 + b_j^2} \right\}_{j=1}^m ;$$

$$\left\{ Q(i\omega_j) \right\}_{j=1}^m = \left\{ \frac{b_j m_j + a_j n_j}{a_j^2 + b_j^2} \right\}_{j=1}^m ,$$

а ідентифікована передаточна функція буде:

$$W_{es}(D) = \left[\sum_{i=0}^{e} \psi_q D_q\right] \times \left[\sum_{r=0}^{s} \varphi_r D_q\right]^{-1}.$$
 (15)

Для кореляційної функції в гармонічному базисі отримаємо вирази:

$$R_{x}(\tau) = \frac{a_{0r}}{2} + \sum_{j=1}^{m} a_{ir} \cos(i\omega_{j}\tau) \quad ; \tag{16}$$

$$R_{yx}(\tau) = \frac{m_0}{2} + \sum_{j=1}^n m_{ir} \cos(i\omega_j \tau) + \sum_{j=1}^n n_{ir} \sin(i\omega_j \tau) , \qquad (17)$$

де компоненти кореляційної функції є:

$$\begin{vmatrix} a_{ir} \\ m_{ir} \\ n_{ir} \end{vmatrix} = \frac{1}{\tau_H} \int_{\tau_{on}} \frac{R_x(\tau)}{R_{xy}(\tau)} \frac{\cos(i\omega_j \tau) d\tau}{\sin(i\omega_j \tau) d\tau};$$
(18)

 компоненти розкладу кореляційної функції від траєкторії стану отриманої в процесі відбору даних IBC.

Для режиму компенсаційного управління енергоактивним реактором функціонал якості управління для концепції стійкості Ляпунова, прийме вид:

$$\exists Strat \left\{ U_i \middle|_{i=1}^j, \sum_{j=1}^m \tau_i = \mathbf{T}_m \right\} : U_i : \mathbf{Z}_0 \xrightarrow{T_m} Z(C_i) ;$$
$$\mathbf{J}_r(U_i \mid T_m) = M \left[\iint_{T_m} \left\{ G_x^L(t, z) \right\}^{0/2} (t, z) + G_U^L(t, z) \right\} dz d\tau , \quad (19)$$

де $X(t,z) = [X(t,z) + \xi_x(t,z)]$ – збурення траскторії стану, $G_x^L, G_U^L \ge 0$ – функції Ляпунова для даного класу, пов'язана з енергією, необхідною для компенсації відхилення параметра стану при дії збурення.

Апостеріорна ймовірність стану при збуренні реактора і реалізації управління у Байесовій формі має представлення

$$P(y_{k} | U_{ik}) = \left\{ \frac{\stackrel{}{P} \{y_{k}\} \cdot \stackrel{}{P} \{U_{ik} | y_{k}\}}{\sum_{k=1}^{m} \stackrel{}{P} \{y_{k}\} \cdot \stackrel{}{P} \{U_{ik} | y_{k}\}} \right\}_{t_{0}}$$
(20)

де $T_m = \Delta t \cdot k$ – термінальний час, $P(U_{ik} | y_k)$ – умовна ймовірність результату управління U_{ik} .

Тобто виникає необхідність переходу до синтезу алгоритмів з певним ступенем достовірності:

$$A\lg|y| = \arg\max\left[L_y(T_m) \times \mu_x^y(T_m)\right], \qquad (21)$$

де $L_{y}()$ – функція правдоподібності стану, $\mu_{x}^{y}()$ – функція розмитості в оцінці стану об'єкта.

Середній ризик при прийнятті рішення на управління визначається в інтервалі допустимих значень I_x^U у вигляді:

$$Risk(y|\hat{x},\xi) = M[E_{\nu}(x,\hat{x})|\hat{x}]^{T_{m}} =$$

=
$$\int_{I_{x}^{U}} E_{\nu}(x,\hat{x})P(x|\hat{x})d\mu_{x} \rightarrow \min_{T_{m}} J_{u}$$
 (22)

де $M[E_{\nu}]^{T_m}$ – середнє значення функції втрат, J_u – функціонал якості управління.

Динаміка вирівнювання режимів n-агрегатного постачання енергії описується моделями балансу потужностей і частоти:

$$\sum_{j=1}^{n} \frac{1}{r_{j} + R_{\mu j}} \left(U_{j}^{*} - \frac{1}{n} \sum_{j=1}^{n} U_{j}^{*} \right)^{2} = \sum_{j=1}^{n} K_{p j} \left(P_{j} - \frac{1}{n} \sum_{j=1}^{n} P_{j} \right)^{2} =$$

$$= \sum_{j=1}^{m} \Delta U^{*}(\xi, t, u) \cdot \Delta I(\xi, t, u_{i})$$

$$\Delta f \sum_{j=1}^{n} \frac{1}{S_{j}} + \left(1 - \sum_{j=1}^{n} \frac{1}{n} \right) \sum_{j=1}^{n} P_{j} = \Delta P(\xi, t, u_{ij}) ;$$
(23)

де U_j – напруга агрегату, P_j – потужність, I_i – струм, $\Delta f = f_0 - f(t, \xi, u_{ij})$ – зсув частоти мережі.

Зміна частоти в аварійному режимі агрегатів описується рівнянням динаміки

$$T_{ds}\frac{d\omega^*(t,\xi,u)}{dt} = -\left(k\frac{P_n}{P_{g\max}} - m_{ds}\right)\omega^*(t,\xi,u) .$$
(24)

Функція розподілу густини ймовірностей коливання енергетичного навантаження в нормальному режимі енергоактивного об'єкта має вигляд:

$$W(P_n, x | T_m) = \frac{\exp(-x^2/2)}{\sqrt{2\pi}} \cdot \left[1 - \lambda \left[6\sigma^2 \right]^{-1} x(3 - x^2) \right], \quad (25)$$

а інтенсивність переключення електроприводів виражається через паусоновий потік у вигляді:

$$P_{\mu}(t) = \sum_{k=1}^{m} P_{\mu k}(t_{k}), \ P_{\mu k}(t) = \sum_{m=1}^{e} a_{m k} F_{k}\left(\frac{t - t_{m k}}{T_{m}}\right),$$
(26)

де $F_k()$ – функція включення приводів.

Кореляційна функція коливань навантаження на мережу від енергоактивного об'єкта визначається на основі:

$$R_{\mu}(\tau / T) = M \left[P_{\mu}(t) \times P_{\mu}(t + \tau) \right] = D_{n} \exp \left[-\frac{|\tau|}{T_{m}} \right], \quad (27)$$

де D_k – дисперсія імпульсів включення приводів в режимі стаціонарно управління.

Прогноз зміни режиму на інтервал τ_n визначимо з рівняння:

$$\hat{X}_{n+\tau} = \sum_{k=0}^{m} \alpha_k X_{u-k} \quad , \tag{28}$$

де $\min_{T_m} \Delta \varepsilon_x^z = -2R_{xy} + 2\alpha R_{xx}$ – алгоритм для коефіцієнтів α_k прогнозу

при С - коефіцієнт сходимості:

$$\alpha_i = \alpha_{i-1} + 2C_{\xi}X$$
, $\varepsilon_{n+\tau} = X_{n+\tau} - X_{n+\tau}$,

або у векторній формі:

$$\stackrel{\mathbf{r}}{\alpha}_{i} = \stackrel{\mathbf{r}}{\alpha}_{i-1} - C\nabla\varepsilon^{2} \ .$$

Тоді функцію стабільності системи можна виразити через густину розподілу ймовірності:

$$W(x | T_m) = \frac{1}{\left[(2\pi)^N |M_x| \right]^{\frac{1}{2}}} \exp\left(-\frac{1}{2} x^T M_x^{-1} x \right), \qquad (29)$$

а достовірність стану:

$$\Pr{ob}\left(x \in I_{DX}^{U} \mid \alpha_{r}\right) \Pr{ob}\left\{\max_{T_{m}}\left[W(x \mid T_{m}) > \alpha_{\varepsilon}\right]\right\} = 1 - \alpha_{r} , \quad (30)$$

де I_{DX}^{U} – інтервал допустимого стану при управлінні U.

3. ВИСНОВКИ

Розглянуті в статті методи та інформаційні технології побудови алгоритмів оцінки сигналів, відображають динамічний стан двигунів електроприводу агрегатів друкарських машин в умові дії активних збурень в мережі електропостачання.

1. Медиковський М.М., Сікора Л.С. Автоматизація керування енергоактивними об'єктами при обмежених ресурсах. – Львів: ЦСД. 2002. - 298с. 2. Аветисян Д.А. Автоматизация проектирования электрических систем. - М.: Высшая ик. 2000. – 330с.