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The article shows that the operations of mathematical logic and algebraic methods
of description of algorithms based on mathematical logic do not take into account
the positions. New operations of o-, -, afi-conjunction (disjunction) and positional
inverting have been defined, which take into account the positions. The properties of
these operations have been formulated and proved. The mutual unambiguousness has
been established between the classical operations of conjunction (disjunction) and
the operations of o-, -, aff-conjunctions (-disjunctions). The ordering of formulas by
positions and the possibility of performing identical transformations of the ordering
have been proved.
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1. Introduction

A position of something is its location or placing. The term is used in mathematics,
computer sciences, informatics and other areas. For example, mathematical induction
[1]uses the initial value of a variable, and programming and information technology has
an initial instruction [2], which, like any other programming instruction, has a unique
number or name. The “initial” value, as well as the “numbers” of the instructions,
are actually their positions. In algorithms, the position of operators has a key value.
However, in classical mathematical logic [1], as well as, in particular, algebraic theories
of algorithms, the positions are not taken into account. Particularly, this can be seen in
the system of algorithmic algebras [3, 4], the modified system of algorithmic algebras
[5, 6], the primitive programming algebra [7, 8], the algebra of algorithms [9], and the
modified algebra of algorithms [10] and their applications [11, 12, 13].

The operations of classical mathematical logic [1], in particular conjunction (&),
disjunction (') do not take into account the positions of logical constants, variables
and predicates. This also applies to non-classical mathematical logic, in particular the
propositional modal logic, the propositional dynamic logic, the linear propositional
temporal logic, the multivalued logic, the fuzzy logic, the intuitionistic logic, and so on.

The system of algorithmic algebras [3] and the modified system of algorithmic
algebras [S5] are formed by two algebras — the algebra of logic extended for three-
digit alphabet and the operator algebra. The signature of the operator algebra
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contains the operations of the composition, alternatives, asynchronous disjunction,
filtration, cycle, and synchronization [3, 5]. But in the operator algebra, as well as in
the algebra of logic extended for three-digit alphabet, there is no means for taking
into account the operator positions.

The signature of the primitive programming algebras [7, 8] contains a substitu-
tion (superposition), branching and parameterized cycling that use the concept of
tuple. However, the signature operations of the primitive programming algebras also
do not take into account the positions.

The signature of the algebra of algorithms [9] is formed by the operations of se-
quencing, elimination, paralleling, cyclic sequencing, elimination and paralleling. In
the modified algebra of algorithms, the signature of the algebra of algorithms is com-
plemented by the operation of multi-elimination [10]. These algebras use a complex
system of two-dimensional operation symbols. But the operations of these algebras
also do not take into account the positions of constants, variables and operators over
which they are performed in the explicit form.

It is known that for performing the ordering, the relation of partial (7)) or strict
order (<) [14] is used. There exists an axiom of complete ordering and an axiom of
choice. However, the relation [ and < also do not use positions. In addition, their ap-
plication does not allow the implementation of identical transformations of orderings.

Particularly, it is important to take into consideration the positions in mathemat-
ical logic, as the basis of modern mathematics. In addition, for an adequate descrip-
tion of algorithms, and not only algorithms, it is necessary to take into account the
positions of operators that form the algorithms.

This paper is dedicated to solving the problem of defining the logical operations,
which would take into account the positions.

2. Unary- and Binary-Positioning of Relations and Operations

For example, the set C = A4 x B consists of the ordered pairs (C = {(a, b) | a € 4,
beB})IfC={(a,a)|ac A} and 4= {0, 1}, then C= {(a, a) | a € A} = {(0,0),
(1, D}

Elements a € 4 and b € B of the ordered pair (a, b) have well-defined positions, but they
are not explicitly specified in the ordered pair (a, b).

For explicit assigning the positions of the elements ¢ € 4 and b € B of the ordered pair
(a, b) we use the letters of the Greek alphabet o and f. The positions of elements @ and b of
the ordered pair (a, b) are written in the form of right lower indices. In this case, the ordered
pair (a, b) will look like (a , b > in which a € A4 is in the position a and b € B is in the position
B, which can be written in the simplified form as a, € 4 and bﬁ € B.Inthiscase C=4 xB=
{(a,b)]|a, €A, bﬁ € B}.

For example, if 4 = {0, 1} and B = {0, 1}, then C= {(a,, b)) | a, € 4, b, € B} = {(0,,0)),
0, lﬂ) 1,0, 1,1 )} IfC=4AxA4={(a, a)|a €A aﬁeA} thenforA {0, 1} we have
Cc={(a, a)|a cd a, € 4} = {0,0,), (0, 1) (1,0, (1, 1)}, butnot C= {(a,a) | a € 4}

= {(0,0), (1 1)}, as it happens in the case w1thout exphclt assigning of the elements positions.

Definition 1. The places a and § of the location of the elements a € 4 and b €
B of the ordered pair (a, b) of the Cartesian product 4 x B in the sets 4 and B, are
called elementary positions of elements.
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Definition 2. The ordered pair (a , bﬁ) with explicit assigning of the elementary
positions of the elements a, € 4 and bﬁ € B of the Cartesian product 4 x B in the
sets A and B, is called a positional ordered pair, and the elements with elementary
positions are called positional elements.

Definition 3. The positional ordered pair (a,, b,) of the Cartesian product 4 x
B of the sets 4 and B with two-positional elements a, € 4 and bﬁ € B, is called a
binary-positional ordered pair and the positional ordered pairs (a,, b,) and (aﬁ, bﬁ)
with one-positional elements a , a,€ 4 and b, b, € B are called unary-positional
ordered pairs.

Both positional elements of the unary-positional ordered pair have one and the
same position. For example, the positional elements of the unary-positional or-
dered pair (c,, d ) have the elementary position «, and the positional elements of the
unary-positional ordered pair (gﬁ, h /3) have the elementary position £.

Definition 4. A random set C =4 x B = {(a,, b) | a, € 4, b, € B}, which is
formed by the binary-positional ordered pairs (a,, b)), is called a binary-positional
binary relation, set or defined on the sets 4 and B. For C=4 xB= {(a,b)|a, €
A,b, € By and C=A4xB={(a,b)|a,c A, b, € B} arandom subset is called a
unary-positional binary relation on the sets A and B.

To demonstrate the difference between unary-positional and binary-positional
binary relations we can have a look at the following example. On the set O = {2, 3}
the unary-positional binary relations g, > ¢ and ¢ 3> 4 where g , g , € O, are false
(untrue), as it is shown in Table 1.

Table 1

The truth values of the unary-positional binary relation q, > q,

q, 9,> 4,
2, ]2, 0
3, | 3, 0

At the same time for the binary-positional binary relation g, > ¢ T where g _, q f
€ O, the truth values are presented in Table 2.
Table 2

The truth values of the binary-positional binary relation q, > q,

9, | 49 | 4.>4;
2, | 2, 0
2, | 3, 0
3, | 2, 1
3, | 3, 0

It is known [14] that a Cartesian product 4 x B x ... x Wofsets A, B, ..., W is
called the set {(a, b, ... ,w)|a € A, b e B, ..., w e W}, formed by the ordered se-
quences (a, b, ..., w) of elements a, b, ..., w.

The difference between g > ¢, and g, >¢q 4 is that the values of the same variable
in different positions can be the same and different. In general, all possible combina-
tions of the variable values for all positions should be considered.
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Definition 5. The unary-positional binary relation F, defined on the sets 4 and B,
is called a unary-positional functional one, if for a random unary-positional ordered
pair (a, b)) € Ax B ((a p bﬂ) € A x B) there is no more than one element v from V
that(a,b) € F ((aﬁ, b)eF).

If there is such an element v from V for a unary-positional ordered pair (a_, b,) or
(a,, b)), then it is denoted with the help of F(a,, b,) or F(a,, b,) and it is recorded as
v=F(a,b)orv=Fa ﬁ, bﬂ) respectively.

Definition 6. The binary-positional binary relation F, defined on the sets 4 and
B, is called a binary-positional functional one, if for a random binary-positional
ordered pair (a, b,) € A x B there is no more than one element v from V' that (a,,
bﬁ) eF.

If there is such an element v from V for a binary-positional ordered pair (a_, b,),
then it is denoted with the help of F(a , b)) and it is recorded as v = F(a,, bﬁ).

Definition 7. A unary- or binary positional binary relation F is called absolutely
defined, if Dom(F) = A x B, and partially defined or just partial, if Dom(F) c A x B.

The unary- or binary positional binary relation £, defined on the sets 4 and B, is
called a unary- or binary-positional binary representation, or a unary- or binary-po-
sitional function from A x Binto V (F : A x B— V), if F is unary- or binary-positional
functional and absolutely defined.

The unary- or binary positional binary relation F' is called a unary- or binary-po-
sitional partial representation or a unary- or binary-positional partial function if F
is unary- or binary-positional functional and partial.

Definition 8. If 7' : 47 — V, then F is a unary- or binary-positional binary func-
tion from 4 into V, and if = {0, 1} at the same time, then F is a unary- or binary-po-
sitional binary predicate on the set 4, and the elements 0 and 1 are false and true.

If F is a unary- or binary-positional binary function from 4 into 4, then F'is a
unary- or binary-positional binary operation on 4.

3. Definitions of Unary- and Binary-Positional Logical Operations

Definition 9. The unary-positional binary operation (x , y )&, which has the truth
value of 1 for random positional variables x ,y , € {0, 1} of the position «, if and
onlyifx =1 andy =1 ,1is called a-conjunction.

From the definition of a-conjunction, it follows that:

l,ifx =1 andy =1;

(xa’ yu)& =
0 — in all other cases,

where x_and y_are positional variables of the elementary position a.

In a simplified form we record (x , y )& as (x, y)&.

Definition 10. The unary-positional binary operation &(xﬁ, yﬁ), which has the
truth value of 1 for random positional variables Xp Y, € {0, 1} of the position f if and

only if X, = 1 p and y,=1, is called f- conjunction.
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From the definition of f-conjunction, we get:
1,if xﬁ=1ﬁ andyﬁ =1ﬁ;

&(x, y,) =
0 — in all other cases,

where X, and Yy, are positional variables of the elementary position /.

In a simplified form we record &(xﬁ, y,) as &(x, ).

Definition 11. The binary-positional binary operation <x,, Vs which has the
truth value of 1 for random positional variables x , y, € {0, 1} of the positions « and
pifandonlyifx =1 andy =1 ,is called afi-conjunction.

From the definition of af-conjunction, we have:

1,ifx =1, andyﬂ =1ﬂ;

<xa, yﬂ> = .
0 — 1n all other cases.

In a simplified form we record <x , V> as <x, y>.

Definition 12. The unary-positional binary operation (x , y )v, which has the truth val-
ueof 1 forrandom positional variablesx ,y € {0, 1} of the position a ifand only ifx =1
andy =1 orifatleastone positional variable has the truth value 1 , is called a-disjunction.

Based on the definition of a-disjunction, we get:

l,ifx =1 andy =1, orx =1 ory =1;

(x,y)v=
0 — in all other cases.

The simplified record of (x , y v is_(x, y)v.

Definition 13. The unary-positional binary operation V(x,, 7)), which has the truth val-
ue of 1 for random positional variables x, ¥, € {0, 1} of the position p if and only if x,=1
and y,= 1 4 Or if at least one positional variable has the truth value 1 » is called f-disjunction.

Based on the definition of S-disjunction, we get:

l,ifxﬁ= lﬁandyﬂ= 1/3,, orx, = lﬁoryﬂ= lﬂ;

v(x, y,) =
0 —1n all other cases.

v(x, y) is a simplified form of the record of f-disjunction v(x,, y,).

Definition 14. The binary-positional binary operation |x , yﬂ|, which has the truth
value of 1 for random positional variables x , Y, € {0, 1} of the positions o and f if
and only if x, = 1_and y,=1lorx =1 and y=1, is called of-disjunction.

From the definition of af- disjunction, we get:
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Lifx =1, andy/),: lﬂ, orx =1, ory,= lﬂ;
A
0 — in all other cases.

x, y| —is a simplified form of the record of af-disjunction |x , yﬁ|.

Definition 15. The unary-positional unary operation —x , where ¢ ¢ is a or f§
position of the positional variable X, has the truth value for any x, € {0, 1} when X,
is the logical value 0 , then —x is the logical value 1, and when X, 1s the logical value
1, then —x  is the logical value 0, is called positional inverting.

Definition 16. The formulas are:

i) logical constants and variables,

ii) positional inverting, a-, -, af-conjunction and disjunction,

iii) if A and B are formulas, then 4 = B is a formula,

iiii) any expression F is a formula, if it can be shown using the items (i) — (iii) with a finite
number of times.

Theorem 1. The operation of a-conjunction is commutative.

Proof. The commutativity of the operation of a-conjunction means that there is an equality:

(x, V& =, V&. (1
The truth values of a-conjunctions (x, y)& and (y, x)& are presented in Table 3.
Table 3
The truth values of a-conjunction (x, y)& and_(y, x)&
x, |y, (x, N& 0, D&
0, | o, 0 0
0, |1, 0 0
1, | o, 0 0
L], 1 1

The truth values of (x, y)& and (y, x)& in Table 3 are identical. It means that
(xx, »& =, &

The theorem has been proved.

Similarly, we prove the equalities:

&(x, y) = &(y, x), 2)
YV =0, X)V, 3)
V(x, y) = vy, x), “)

i.e. the operations of a-, f-conjunction and disjunction are commutative.
The truth of formulas:
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J 1,ifx=1;
(r, D& = (5)
_O —1in all other cases;
1,ifx=1;
&(x, 1) =1 ©)
0 — in all other cases;
1, ifx=1;
<x, 1>= A« @)
_O —1in all other cases;
1,ify=1;
<1y - (8)
_0 —1in all other cases;
0,ifx=0;
(x, O)v = 1 ©)
_1 —1n all other cases;
0,ifx=0;
v(x, 0) = (10)
11 —1in all other cases;
0,ifx=0;
b, 0] = (11)
1 — in all other cases;
0,ify=0;
10,y = (12)

1 — in all other cases;

follows directly from their definitions (see Definitions 9-14).

Definition 17. The sequence of elementary positions of positional logical con-
stants and variables formed by operations is called a position of positional constants
and variables.

For example, the formula <x, (y, z)&> contains the operations of af-conjunction
and a-conjunction. In a-conjunction (y, z)& the variables y and z have the elementary
position a and «, i.e. we have y_and z_. And a-conjunction itself has the elementary
position f in the operation of af-conjunction and the variable x has the elementary
position a. Taking into account the elementary position f of the operation of a-con-
junction for positional variables y and z takes us to the positional variables Vs and
2, Thus, in the formula <x, (v, z)&> the positional variables x, y and z have the
positions a, of i of.

In the operations, as a rule, the positions, which contain positional variables, will
be omitted to simplify the formula recording.

Theorem 2. There is the distributivity:

<x, (¥, 2)\> = (<x, y>, <x, 2>)\V. (13)

Proof. In the operation of af-conjunction <x, y> the positional variables x and
y have the elementary positions « and f, i.e. we have <x, V7 Similarly, in af-
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conjunction <x, z> a and f are the elementary positions of s and y, respectively.
Thus, we get the formula <x , zp>.

In the operation of a-disjunction (<x, y>, <x, z>)v, both af-conjunction <x, y> and
af-conjunction <x, z> have the elementary position o each. The explicit recording
of these positions gives the formula (<x, y> , <x, z> )v. Taking into account the
positions of the variables in ¢8-conjunctions <x, y> and <x, z>, we get (<x , Vo Ky
z> V. Adding the elementary position « of the operations <x , Vi, and <x , z>,to
the elementary positions of the positional variables x , Yy and z, we get the positional
variables x_, y, and z, with the positions aa, fa and fa. Thus, the formula (<x,
y>, <x, z>)v with explicitly recorded positions of the positional variables looks the
following way (<x,,, y,>, <X, 2, >)V.

Similarly, we record explicitly the positions of the positional variables of the for-
mula <x, (y, z)v)>. In the formula (y, z)v the positional variables y and z have the
elementary positions & and a. So (y, z)v is the formula (y , z )v. It has the elementary
position £ in the operation <x , (v, z )v)>. Having recorded explicitly the elementary
positions of the positional variable x and (y , z,)v of the operation of af-conjunction
<X, (v, ,)v>, we get the formula <x , (v, z,)v>. Adding the position f to the elemen-
tary positions of the positional variables y_and z , we have the formula <x , (y o Za /})y>.

Based on the formula (9), we have x = (x, 0)v. Substituting into the formula <x ,
(yaﬁ, Z, V> instead of x on the position a of the formula (x, 0)v, we get <(x, O)v,,
0, 2,,)v>. The variable x and the logical constant 0 in a-disjunction (x, 0)v, have
the position a, so we have (x, 0 )v . Taking the position a under the sign of the op-
eration of a-disjunction, we get (x_, 0 )v. Substituting the received expression into
the formula <(x, 0)v, (yaﬁ, Zaﬁ)¥>, we deduce the formula <(x_, 0 )v, o zaﬁ)y>.

In<(x_, 0, )v, (yaﬁ, zaﬁ)y> both operations of a-disjunction are embedded into
the operation of ¢f-conjunction. The variables x, y, z and the constant 0 in the em-
bedded operations of a-disjunction have the elementary position a, i.e. we have x ,
v, z,and 0 . In the operation of af-conjunction the positional variable x and the
positional constant 0 have the elementary position «, and the positional variables y,
and z_ already have the elementary position f8. If, when transforming the formulas,
the embedding of the formulas needs to be changed, then the elementary positions
of the variables and the constants of the operations must be kept as they were before
the transformations. For example, the transformation of the formula <(x_, 0 )v, (yaﬁ,
zaﬁ)¥> into the formula (<x_, Vs Ky zﬁa>)y leads to the fact, that the operations
of af-conjunction are already embedded into the operation of a-disjunction. Thus, in
the formula received after the transformations (<x_, Vi X zﬂa>)¥ the elementary
positions of variables and constants of the operations are kept the same as they were
in the formula <(x_, 0 )v, (yaﬂ, zaﬁ)y> before the transformations. In addition, we
can assume that the position of o variables y and z in the formula <(x_, 0, )v, (yaﬁ,
3 \Veg is the same as the position Sa in the formula (<x_, ViiZs Xy 27N

Table 4 presents the truth values of the formulas <(x_, 0 )v, (yaﬁ, 3 \Vg and
(. Y3y Ky Z )Y, taking into account the same truth values of the positional
variables y and z on the positions ¢f and fa.
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Table 4
The truth values of the formulas <(x,, 0 )v, (yaﬂ, Zaﬁ)¥> and (<x, Vs> K
2>
Yo | Vu | Za | Y | Zy < 0, )Y (0 Z,)v> (X0 Vs X 2,7V
0, [0, [0, [0, [0, 0 0
0, 0 e 1 4 0, s L, 5 0 0
0, [ L, [0, [ 1, [0, 0 0
o, [ L [ [, |1, 0 0
L, [0, [0, [0, 0, 0 0
L [0, [ L, [o, 1, 1 1
L, 1 4 0 e laﬁ Ouﬁ 1 1
L | L [ T, [y, 1 1

Table 4 shows, that the truth values of the formulas <(x_, 0_)v, (yaﬁ, zaﬁ)¥>and
(X, Yy <X, 2,,>)y are identical. Taking into account that (x,, 0 )v =x_(For-
mula 9), it proves the truth of the formula:

<xa’ (yaﬂ’ Zaﬂ)¥> = (<x(m’ y /fa>’ <xaa’ Z/ioz>)M'
Omitting the positions in the received formula, we get a simplified form:
<X, (1, 2)v> = (<, y>, <x, 2>)v.

The theorem has been proved.
Similarly, we can prove that:

<X, M(x, ¥)> = (<X, 1>, <X, 2>). (14)
Theorem 3. There is the equality:
alx, Y& = (=x, 2w (15)

Proof. Taking into account the definition of the operation of positional invert-
ing (see Definition 13), the truth values of the inverted operation of a-conjunction
=(x, y)& will be nothing else but the inverted truth values of a-conjunction (x, y)&,
i.e. the truth values will be identical to the ones in Table 5.

Table 5
The inverted truth values of a-conjunction (x, y)&
x, |y, | en& o (&
0, | o, 0 1
0, | 1, 0 1
1, | o, 0 1
L], 1 0

Table 6 presents the truth values of the formula (=x, =y)v.
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Table 6
The truth values of the formula (=x, =y)v

x, | (=x, )
1

a

a

a

all =2 Rl K=}

1
1
0

a a

Tables 5 and 6 have the identical truth values for a-disjunction (=x, =y)v and
inverted a-conjunction —(x, y)&. Based on this fact, we have established that —(x,
V& = (=x, Zy)v.

It is obvious that:

0,ifx=x =1 andy=y =1;
:()C, J/)& = (:xaa :'ya)M =
1 — in all other cases,

The theorem has been proved.
Similarly, we can prove the equalities:

:&(X/),, yﬁ) = M(:‘-xﬁa _‘yﬁ)» (16)
:<x(x’ yﬁ> = |:xu; :y/f|’ (17)
alx, v v = (=%, 2w )&, (18)
b, vl =<=x, > (20)

Theorem 4. The operation of a-conjunction is associative:
(e, &, )& = (x, (v, 2)&)& (21)

Proof. The formulas ((x, y)&, z)& and (x, (y, z)&)& with explicitly recorded
positions of the positional variables x, y and z look as ((x,, v, )&, z )& and (x , (v
z,)&)&.

(25

Taking into account that (x, 1)& = x (formula (6)) and (z, 1)& = z, we can de-
duce the formulas ((x_, y )&, (z, )& )& and ((x, D& . (v, 2, )&)&. The explicit

record of all positionémgi\(;gs the formulas ((x,, ym)&,_(;; o 1 )&Z;& and ((x ,1 )&,

W, 2, )&)&. Both formulas are formed by the same positionzll variables, over V&(/Tlich
we perform only the operation of a-conjunction, so ((x,,», )&, (z, . 1 )&)& = ((x,,
1)& 0, 2,)8)&, and thus ((x, )&, 2)& = (x, (v, 2)&)&.

The theorem has been proved.
Similarly, we prove the truth of the formula:

((x, V)NV, 2)v = (x, (v, 2)V)V. (22)

a0’
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4. Representation of classical logical operations of conjunction and disjunc-
tion with the operations of a-, -, af-conjunction (-disjunction)

To establish the relations between classical operations of conjunction and dis-
junction [1] and the operations of a-, -, aff-conjunctions (-disjunctions), we will
formulate and prove the theorems.

Theorem 5. The classical operation of conjunction x & y is equal to the clas-
sical disjunction of the operations of a-conjunction (x, y)&, f-conjunction &(x, ),
of-conjunction <x, y>, and af-conjunction <y, x>.

Proof. Table 7 shows the truth values of a-, f-, af-conjunctions represented
by the formulas (x, y)&, &(x, ¥), <x, y> and <y, x>, respectively, and the classical
conjunction x & .

Table 7
The truth values (x, y)&, &(x, y), <x, y>, <y, x> and x & y
a
B
x 1 v | = | v (. )& &(x, y) <X, y> <y, x> x&y
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1
0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 1 1 0 0 0 0 1 1
0 1 1 1 0 1 0 1 1
1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1
1 0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 0 1
1 1 0 0 1 0 0 0 1
1 1 0 1 1 0 1 0 1
1 1 1 0 1 0 0 1 1
1 1 1 1 1 1 1 1 1

The classical operation of conjunction x & y takes the truth value 1 if and only if both
variables x and y have the truth values 1, regardless of their positions, as shown in Table 7.
Looking at Table 7, it is easy to see that there is the equality:

x&y =, &V &X,y) Vv <x,y>V <y, x>.

The theorem has been proved.

Theorem 6. The classical operation of disjunction x v y is equal to the classical
disjunction of the operation of a-disjunction (x, y)v, S-disjunction v(x, y), af-
disjunction |x, y| and of-disjunction |y, x|.

Proof. Table 8 presents the truth values of a-, f-, af-disjunctions, represented
by the formulas (x, y)v, v(x, ¥), |x, y| and |y, x|, respectively, and the classical
disjunction x v y.
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Table 8
The truth values (x, y)v, v(x, y), |x, y|, [y, x| and x v y
o B
. 5 . 5 (e, ) V(X ) b, vl v, x| xvy
0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 1
0 0 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1 1
0 1 0 0 1 0 0 1 1
0 1 0 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 1 1
1 0 0 0 1 0 1 0 1
1 0 0 1 1 1 1 0 1
1 0 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1 1
1 1 0 0 1 0 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1

Based on Table 8 we have the equality:
xVy=0 VXY Vi y vy,

The theorem has been proved.

5. Ordering

The positional elements of the operations of a-, -, af-conjunction (disjunction)
and positional inverting are positional constants or variables. For example, 0 , 1 p Xy
Y, are positional elements of the operations. Then we denote the positional elements
of the operations by capital letters of the Latin alphabet.

Definition 18. A random formula F, each position of positional elements of the
operation of which differs from the other positions of positional elements is called
strictly ordered.

Theorem 7. A random formula F, formed by af-conjunctions and (or) af-dis-
junctions, is strictly ordered.

Proof. There are 14 possible different basic options for constructing the formulas
by af-conjunctions and (or) af-disjunctions, and all other options are combinations
of these 14 options. The basic ones are:

1)<B, Cﬂ> — af-conjunction of positional elements;

2)<B,<C,D e af-conjunction of a positional element and o/f-conjunction;

3)<<B,Cp>,D>— af-conjunction of aff-conjunction and a positional element;

4)<<B, Cﬁ>a, <D_,E e af-conjunction of af-conjunctions;

5) B, CJ - of-disjunction of positional elements;

6)|B,|C, Dﬁ| ﬂ| — af-disjunction of a positional element and af-disjunction;

7)||B Cﬁ| Dﬂ| — af-disjunction of af-disjunction and a positional element;

o’ o’
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8)1IB,, Cﬂ| D, E ﬁ| ﬂ| — of-disjunction of gf-disjunctions;

9)<B,,|C, D, > — af-conjunction of a positional element and ¢f-disjunction;

10)<B,, C| , D> — ap-conjunction of af}-disjunction and a positional element;

1) <8, CJ, D, E,| > — aff-conjunction of of-disjunctions;

12) |B ,<C, Dﬁ>ﬁ| — af-disjunction of a positional element and af-conjunction;

13)[<B,, C>,, D,| — ap-disjunction of ¢f-conjunction and a positional element;

14)[<B,, C>, <D, E> |- af-disjunction of af-conjunctions, where B, C , C,,
D,D, and E , are positional elements with elementary positions. These positional
elements are positional constants or variables.

Assigning the elementary positions of operations to the elementary positions of
their positional elements, we get the formulas:

H<B,C "~ af-conjunction of positional elements;

2)<B, <C,p D> — af-conjunction of a positional element and af-conjunction;

3)<<B,, C,>, D> — af-conjunction of af-conjunction and a positional element;

4)<<B_, ¢,> <D, E>>— of-conjunction of af-conjunctions;

5) |B,, C,| — af-disjunction of positional elements;

6) |B,, |C,, D, — afp-disjunction of a positional element and aff-disjunction;

N8B, Cyls D,| — op-disjunction of af-disjunction and a positional element;
8) 1B, Cﬂa|, D, E MH — af-disjunction of af-disjunctions;
9)<B,|C,, D, > — ap-conjunction of a positional element and af-disjunction;

10)<B,,, C, |, D> — ap-conjunction of off-disjunction and a positional element;

1) <B,,C,|, D, E, > - af-conjunction of ap-disjunctions;

12) B, <C o D/fﬂ>| — af-disjunction of a positional element and aff-conjunction;

13) [<B,,, C, >, D | — ap-disjunction of af-conjunction and a positional element;

14)[<B,, C,>, <D, E, >| — af-disjunction of ¢f-conjunctions.

Each of the 14 basic formula options has positional elements, each position of
which is different from all other positions of positional elements. For example, the
basic formula of the second option is formed by the positional elements B, C_, D,
with positions a, af and Sf, which differ from each other. Similarly, Formula 14 is
formed by the positional elements B, C " D(x/}’ and £ ﬂlf’ whose positions are also dif-
ferent. The basic formulas are strictly ordered. All other formulas constructed from
them will also be strictly ordered.

The theorem has been proved.

The rule of ordering of positional elements by positions.

The initial positional element of a random strictly ordered formula F is:

* a positional element with the elementary position a;

* if there is no such a positional element, then the initial one is a positional
element whose position is formed only by the elementary positions o and the
number of these positions is the smallest;

» if there are several positional elements with the same number of elementary
positions a, then any of them is initial.

Examples. In a strictly ordered formula:

<X, <Y, <Z, <R, <S, T>>>>>

o

o

o’

ao®
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the initial element is the positional element X as it has the elementary position
a. Whereas the formulas:

<<<4, B>, X>, <Y, <Z,<R, <S, T>>>>>and <<§, <R, <Z, <Y, X>>>>, T>

have the initial positional elements 4 and S respectively.

The next positional element is:

* the one which forms a binary-positional binary operation directly with the
previous one;

* or it has the elementary position a in the binary-positional binary operation,
which directly enters the binary-positional binary operation with the previous
positional elements;

* or it has the position which is formed only by the elementary positions a in
the binary-positional binary operations that are part of the binary-positional
binary operation with the previous positional element.

Example 1. For a strictly ordered formula <X, <Y, <Z, <R, <§, T>>>>> the next
elements after the initial one is the element Y, and then the next after Y is the position-
al element Z, and then the next are the positional elements R, S and 7, respectively.

Example 2. In strictly ordered formulas <<<4, B>, X>, <Y, <Z, <R, <S, T>>>>>
and <<§, <R, <Z, <Y, X>>>> T> the next ones are the positional elements B, X, ¥, Z,
R, S, Tand R, Z, Y, X, T respectively.

Example 3. Let us have a bit complicated formula:

<X, <4, [<<B, R>, >, (|, Z>>

The positional element X is the first. 4 is the second. Then — B, and after it — R
and then — S. Now — C and finally — Z.

Example 4. Let us have a look at the ordering of positional elements of the for-
mulas Q, D and M:

0 =<X, <D, |<<B, R>, §>, (||, Z>>,
D =<K, <L, |M, N>>,
M=I|P,<I,|J, <G, |H, |V, <W, E>|>[>|

Let the first positional element belong to the formula Q. This is X. The second is the
positional element D. Since D is a formula, then we have K instead of D. After that we
have L and then — M. Instead of M we have sequentially ordered positional elements
P, 1,J, G, H,V,Wand E. Then — N. Later B, R and S. After that — C and finally — Z.

Other rules for ordering positional elements of formulas are also possible. Below
there is one more.

The rule of ordering of positional elements by selecting the initial positional
element.

Its essence lies in setting a positional element for any formula as the initial one.
Each subsequent positional element is determined on the basis of the formation of
the binary-positional binary operation with a previous positional element.
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Example 5. Let for the formula:

<4,<B, ||C, <<D, G>, H>|, E[>>,

the positional element G is initial. It forms af-conjunction with the positional
element D. Thus, D is the next positional element after G. af-conjunction <D, G>
together with H forms new af-conjunction. So, H is the next positional element af-
ter D. Now af-conjunction <<D, G>, H> together with C forms af-disjunction |C,
<<D, G>, H>|. Thus, C is the next positional element after H. Similarly the positional
element £ and ¢f-disjunction |C, <<D, G>, H>| form new af-disjunction ||C, <<D,
G>, H>|, E|. Thus, E is the next positional elements of the ordering. After that the
positional element B enters the ordering, which with ||C, <<D, G>, H>|, E| forms
the operation of af-conjunction <B, ||C, <<D, G>, H>|, E|>. The last in the ordering
is the positional element A4, because it with <B, ||C, <<D, G>, H>|, E|> forms the
operation of af-conjunction.

6. Conclusions

By the completed analysis of both classical and non-classical mathematical logic
as well as the algebraic methods of description of algorithms, it has been found
out that their operations do not set positions and they do not operate positions. The
consideration of positions is extremely important in both their theoretical and applied
value for an adequate description and transformations of ordered processes.

New operations of a-, - and af-conjunction (disjunction) have been defined
which assign a-, f- and a-f positions to the formulas and transform the sequences
of positions.

The commutativity and associativity of a- and f- conjunction (disjunction) have
been proved.

The distributivity of a-, - and a/-conjunction has been proved.

The operation of positional inverting has been introduced, the links between the
operations of a-, - and af-conjunction (disjunction) and positional inverting have
been established.

The correctness of the introduced operations of a-, f-, af-conjunctions (-dis-
junctions) has been proved on the basis of establishing a mutual unambiguous cor-
respondence between the classical operations of conjunction (disjunction) and the
introduced new operations of a-, -, aff-conjunctions (-disjunctions).

It has been proved that a random formula formed by o/5-conjunctions (disjunc-
tions) is strictly ordered.

The possibility of performing the identical transformations over the ordered for-
mulas has been shown.
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inverting have been defined, which take into account the positions. The properties of
these operations have been formulated and proved. The mutual unambiguousness has
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main types of motion of the UAV body, namely the hull displacement and the hull
vibration caused by the rotation of the screws and subsequent processing of these
signals and filtering noise. After the UAV is identified in the airspace, measures are
taken to neutralize it, using the method of intercepting control or creating noise at
the control frequencies.

Results. The suggested system for detecting the presence of drones, based on the
identification and assessment of the mutual wavelet spectrum, has been determined
on the basis of the information received about the vibration of the drone hull and its
vibrations, which are transmitted from the unmanned aerial vehicle.

Novelty. The use of a small-field region for the conversion of input signals
provides high efficiency of filtering and identification of signals, significantly
improves the resolution and transmission coefficient in the spatial region of the
small-field conversion.

Practical Significance. This development significantly reduces the price of the
drone identification system. Also, the system has the ability to effectively identify a
large number of drones at the same time.
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Research Methodology. The methodology of mathematical logic and the theory
of sets have been used in the research.

Results. The most significant theoretical result is the creation of a new
methodology, which is based on the introduction of positions in the binary Cartesian
product of sets. The operations of mathematical logic and algebraic methods of
description of algorithms based on mathematical logic do not take into account the
positions. New operations of a-, f-, afi-conjunction (disjunction) and positional
inverting have been defined, which take into account the positions. The properties of
these operations have been formulated and proved. The mutual unambiguousness has
been established between the classical operations of conjunction (disjunction) and
the operations of a-, B-, af-conjunctions (-disjunctions). The ordering of formulas by
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positions and the possibility of performing identical transformations of the ordering
have been proved.

Novelty. New, in addition to the methodology, is the created positional logic,
which contains new operations a-, -, ap-conjuncture (disjunction) and positional
inverting, which take into account the positions of their constituents.

Practical Significance. Practical significance of the work lies in the analytical
description of ordering, in particular algorithms.

UDC 519.65

UNIFORM APPROXIMATION BY RATIONAL EXPRESSION

P. S. Malachivskyy'?, Ya. V, Pizyur®, R. P. Malachivskyy?

!Center of Mathematical Modeling, Ya. S. Pidstryhach Institute for Applied
Problems of Mechanics and Mathematics,
15, Dudayev St. Lviv 79005, Ukraine"Petro.Malachivskyy@gmail.com

2Ukrainian Academy of Printing, 19, Pid Holoskom St., Lvive, 79020, Ukraine
3National University “Lviv Polytecnic”, 12, S.Bandera St., Lviv, 79013, Ukraine
pizyur@yahoo.com
romanmalachivsky@gmail.com

Research Methodology. The research of the method of calculating the parameters
of uniform approximation by rational expression is based on the application of
methods of mathematical analysis and the theory of approximation of functions.

Results. The method of calculating the parameters of uniform approximation by
a rational expression has been developed.

Novelty. The algorithm of uniform approximation by rational expression has
been described. The idea of the method is based on the construction of the power-
average approximation as boundary approximation in norm under . It consists
in constructing a boundary power-average approximation. The method of least
squares with two variable weight functions is used to construct power-average
approximations. First weight function provides the construction of a power-average
approximation, and the second — specification the parameters linearized of rational
expression. The method of successive refinement of weight functions has been
suggested.

Practical Significance. An effective method for determining the parameters of
uniform approximation by a rational expression has been suggested. Approximation
of rational expression is used in constructing models of functional converters,
modeling of control systems.



